Chapter 8 Bonding

What is a Bond?

- A force that holds atoms together.
- Why?
- We will look at it in terms of energy.
- Bond energy- the energy required to break a bond.
- Why are compounds formed?
- Because it gives the system the lowest energy.

Ionic Bonding

- An atom with a low ionization energy reacts with an atom with high electron affinity.
- A metal and a non metal
- The electron moves.
- Opposite charges hold the atoms together.

Coulomb's Law

- E= 2.31 x 10^{-19} J · nm(Q₁Q₂)/r
- Q is the charge.
- r is the distance between the centers.
- If charges are opposite, E is negative
- exothermic
- Same charge, positive E, requires energy to bring them together.

What about covalent compounds?

- The electrons in each atom are attracted to the nucleus of the other.
- The electrons repel each other,
- The nuclei repel each other.
- The reach a distance with the lowest possible energy.
- The distance between is the bond length.

Covalent Bonding

- Electrons are shared by atoms.
- These are two extremes.
- In between are polar covalent bonds.
- The electrons are not shared evenly.
- One end is slightly positive, the other negative.
- \bullet Indicated using small delta $\delta.$

Electronegativity The ability of an electron to attract shared electrons to itself. Pauling method Imaginary molecule HX Expected H-X energy = H-H energy + X-X energy Δ = (H-X) actual - (H-X) expected

Electronegativity

- ullet Δ is known for almost every element
- Gives us relative electronegativities of all elements.
- Tends to increase left to right.
- decreases as you go down a group.
- Most noble gases aren't discussed.
- Difference in electronegativity between atoms tells us how polar the bond is.

Dipole Moments

- A molecule with a center of negative charge and a center of positive charge is dipolar (two poles),
- or has a dipole moment.
- Center of charge doesn't have to be on an atom.
- Will line up in the presence of an electric field.

How It is drawn

Which Molecules Have Dipoles?

- Any two atom molecule with a polar bond.
- With three or more atoms there are two considerations.
 - 1) There must be a polar bond.
 - 2) Geometry can't cancel it out.

Geometry and polarity

- Three shapes will cancel them out.
- Linear

Geometry and polarity

- Three shapes will cancel them out.
- Planar triangles

Geometry and polarity

- Three shapes will cancel them out.
- Tetrahedral

Geometry and polarity

- Others don't cancel
- Bent

Geometry and polarity

- Others don't cancel
- Trigonal Pyramidal

lons

- Atoms tend to react to form noble gas configuration.
- Metals lose electrons to form cations
- Nonmetals can share electrons in covalent bonds.
 - -When two non-metals react.(more later)
- Or they can gain electrons to form anions.

Ionic Compounds

- We mean the solid crystal.
- lons align themselves to maximize attractions between opposite charges,
- and to minimize repulsion between like ions.
- Can stabilize ions that would be unstable as a gas.
- React to achieve noble gas configuration

Size of ions

- Ion size increases down a group.
- Cations are smaller than the atoms they came from.
- Anions are larger.
- across a row they get smaller, and then suddenly larger.
- First half are cations.
- Second half are anions.

Periodic Trends

- Across the period nuclear charge increases so they get smaller.
- Energy level changes between anions and cations.

Size of Isoelectronic ions

• Positive ions have more protons so they are smaller.

Forming Ionic Compounds

- Lattice energy the energy associated with making a solid ionic compound from its gaseous ions.
- \bullet M⁺(g) + X⁻(g) \rightarrow MX(s)
- This is the energy that "pays" for making ionic compounds.
- Energy is a state function so we can get from reactants to products in a round about way.

$$Na(s) + \frac{1}{2}F_2(g) \rightarrow NaF(s)$$

• First sublime Na $Na(s) \rightarrow Na(g)$

 $\Delta H = 109 \text{ kJ/mol}$

 $Na(g) \rightarrow Na^{+}(g) + e^{-}$ Ionize Na(g)

 $\Delta H = 495 \text{ kJ/mol}$

• Break F-F Bond $\frac{1}{2}F_{2}(g) \to F(g)$

 $\Delta H = 77 \text{ kJ/mol}$

 Add electron to F $F(g) + e^- \rightarrow F^-(g)$

 $\Delta H = -328 \text{ kJ/mol}$

$$Na(s) + \frac{1}{2}F_2(g) \rightarrow NaF(s)$$

Lattice energy

Na⁺(g) + F⁻(g)
$$\rightarrow$$
 NaF(s)
 Δ H = -928 kJ/mol

Calculating Lattice Energy

- Lattice Energy = k(Q₁Q₂ / r)
- k is a constant that depends on the structure of the crystal.
- Q's are charges.
- r is internuclear distance.
- Lattice energy is with smaller ions
- Lattice energy is greater with more highly charged ions.

Calculating Lattice Energy

- This bigger lattice energy "pays" for the extra ionization energy.
- Also "pays" for unfavorable electron affinity.
- O²-(g) is unstable, but will form as part of a crystal

Partial Ionic Character

- There are probably no totally ionic bonds between individual atoms.
- Calculate % ionic character.
- Compare measured dipole of X-Y bonds to the calculated dipole of X+Ythe completely ionic case.
- % dipole = Measured X-Y x 100 Calculated X+Y
- In the gas phase.

How do we deal with it?

- If bonds can't be ionic, what are ionic compounds?
- And what about polyatomic ions?
- An ionic compound will be defined as any substance that conducts electricity when melted.
- Also use the generic term salt.

The Covalent Bond

- The forces that causes a group of atoms to behave as a unit.
- Why?
- Due to the tendency of atoms to achieve the lowest energy state.
- It takes 1652 kJ to dissociate a mole of CH₄ into its ions
- Since each hydrogen is hooked to the carbon, we get the average energy = 413 kJ/mol

- CH₃Cl has 3 C-H, and 1 C Cl
- the C-Cl bond is 339 kJ/mol
- The bond is a human invention.
- It is a method of explaining the energy change associated with forming molecules.
- Bonds don't exist in nature, but are useful.
- We have a model of a bond.

What is a Model?

- Explains how nature operates.
- Derived from observations.
- It simplifies them and categorizes the
- A model must be sensible, but it has limitations.

Properties of a Model

- A human inventions, not a blown up picture of nature.
- Models can be wrong, because they are based on speculations and oversimplification.
- Become more complicated with age.
- You must understand the assumptions in the model, and look for weaknesses.
- We learn more when the model is wrong than when it is right.

Covalent Bond Energies • We made some simplifications in

- describing the bond energy of CH₄
- Each C-H bond has a different energy.

 \bullet CH₄ \rightarrow CH₃ + H

 $\Delta H = 435 \text{ kJ/mol}$

 \bullet CH₃ \rightarrow CH₂ + H

 $\Delta H = 453 \text{ kJ/mol}$

 \bullet CH₂ \rightarrow CH + H

 $\Delta H = 425 \text{ kJ/mol}$

 \bullet CH \rightarrow C + H

 $\Delta H = 339 \text{ kJ/mol}$

 Each bond is sensitive to its environment.

Averages

- There is a table of the averages of different types of bonds pg. 365
- single bond- one pair of electrons is shared.
- double bond- two pair of electrons are shared.
- triple bond- three pair of electrons are shared.
- More bonds, more bond energy, but shorter bond length.

Using Bond Energies

- We can estimate ∆H for a reaction.
- It takes energy to break bonds, and end up with atoms (+).
- We get energy when we use atoms to form bonds (-).
- If we add up the energy it took to break the bonds, and subtract the energy we get from forming the bonds we get the ΔΗ.
- Energy and Enthalpy are state functions.

Find the energy for this

$$2 CH_2 = CHCH_3 + 2NH_3 + O_2$$

 $\rightarrow 2 CH_2 = CHC = N + 6 H_2O$

C-H 413 kJ/mol O-H 467 kJ/mol C=C 614kJ/mol O=O 495 kJ/mol N-H 391 kJ/mol C≡N 891 kJ/mol

C-C 347 kJ/mol

Localized Electron Model

- Simple model, easily applied.
- A molecule is composed of atoms that are bound together by sharing pairs of electrons using the atomic orbitals of the bound atoms.
- Three Parts
- 1) Valence electrons using Lewis structures
- 2) Prediction of geometry using VSEPR
- Description of the types of orbitals (Chapt 9)

Lewis Structure

- Shows how the valence electrons are arranged.
- One dot for each valence electron.
- A stable compound has all its atoms with a noble gas configuration.
- Hydrogen follows the duet rule.
- The rest follow the octet rule.
- Bonding pair is the one between the symbols.

Rules

- Sum the valence electrons.
- Use a pair to form a bond between each pair of atoms.
- Arrange the rest to fulfill the octet rule (except for H and the duet).
- \bullet H₂O
- A line can be used instead of a pair.

Quiz Answers

- 1. D
- 2. B
- 3. A
- 4. D
- 5. C
- 6. E
- 7. D
- 8. E
- 9. E

A useful equation

- (happy-have) / 2 = bonds
- CO₂ C is central atom
- POCl₃ P is central atom
- •SO₄²⁻ S is central atom
- SO₃²- S is central atom
- PO₁³- P is central atom
- SCl₂ S is central atom

Exceptions to the octet

- ●BH₃
- Be and B often do not achieve octet
- Have less than an octet, for electron deficient molecules.
- \bullet SF₆
- Third row and larger elements can exceed the octet
- Use 3d orbitals?
- I₃

Exceptions to the octet

- When we must exceed the octet, extra electrons go on central atom.
- (Happy have)/2 won't work
- •CIF₃
- •XeO₃
- ICI₄⁻
- •BeCl₂

Resonance

- Sometimes there is more than one valid structure for an molecule or ion.
- NO₃
- Use double arrows to indicate it is the "average" of the structures.
- It doesn't switch between them.
- NO₂
- Localized electron model is based on pairs of electrons, doesn't deal with odd numbers.

Formal Charge

- For molecules and polyatomic ions that exceed the octet there are several different structures.
- Use charges on atoms to help decide which.
- Trying to use the oxidation numbers to put charges on atoms in molecules doesn't work.

Formal Charge

- The difference between the number of valence electrons on the free atom and that assigned in the molecule or ion.
- We count half the electrons in each bond as "belonging" to the atom.
- SO₄-2
- Molecules try to achieve as low a formal charge as possible.
- Negative formal charges should be on electronegative elements.

Examples

- \bullet XeO₃
- •NO₄3.
- •SO₂Cl₂

VSEPR

- Lewis structures tell us how the atoms are connected to each other.
- They don't tell us anything about shape.
- The shape of a molecule can greatly affect its properties.
- Valence Shell Electron Pair Repulsion Theory allows us to predict geometry

VSEPR

- Molecules take a shape that puts electron pairs as far away from each other as possible.
- Have to draw the Lewis structure to determine electron pairs.
- bonding
- nonbonding lone pair
- •Lone pair take more space.
- Multiple bonds count as one pair.

VSEPR

- The number of pairs determines
 - -bond angles
 - -underlying structure
- The number of atoms determines
 - -actual shape

VSEPR				
Electron	Bond	Underlying		
pairs	Angles	Shape		
2	180°	Linear		
3	120°	Trigonal Planar		
4	109.5°	Tetrahedral		
5	90°&	Trigonal		
	120°	Bipyramidal		
6	90°	Octagonal		

Actual shape Non-Electron Bonding Bonding **Pairs Pairs Pairs** Shape 2 2 0 linear 3 3 0 trigonal planar 3 2 1 bent 4 tetrahedral 4 0 4 3 1 trigonal pyramidal 4 2 2 bent

Actual Shape Non- Electron Bonding Bonding					
Pairs	Pairs	Pairs	Shape		
5	5	0	trigonal bipyrimidal		
5	4	1	See-saw		
5	3	2	T-shaped		
5	2	3	linear		

Actual Shape Electron Bonding Bonding **Pairs Pairs** Pairs Shape 6 6 0 Octahedral 5 Square Pyramidal 6 1 6 4 2 Square Planar 6 3 3 T-shaped 2 1 linear 6

Examples • SiF₄ • SeF₄ • KrF₄ • BF₃ • PF₃ • BrF₃

No central atom

- Can predict the geometry of each angle.
- build it piece by piece.

How well does it work?

- Does an outstanding job for such a simple model.
- Predictions are almost always accurate.
- Like all simple models, it has exceptions.
- Doesn't deal with odd electrons

Polar molecules

- Must have polar bonds
- Must not be symmetrical
- Symmetrical shapes include
 - -Linear
 - -Trigonal planar
 - -Tetrahedral
 - -Trigonal bipyrimidal
 - -Octahedral
 - -Square planar

